
Copyright © 2000 Certification Services, Inc. 1

2002 FAA Software Conference
C++ -

1
Copyright © 2002 Certification Services, Inc.

CSI
Serving the aircraft and CNS/ATM communities

2002 FAA Software Conference C++ -

C++
The natural enemy of DO-178B?

Mike DeWalt
Chief Scientist, Aviation Systems
Certification Services, Inc.
mike.dewalt@certification.com
Voice +1.360.376.8110

Copyright © 2000 Certification Services, Inc. 2

2002 FAA Software Conference
C++ -

CSI

CSI

2Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

Recent headlines

C++ should never be used in a safety
critical system (hatten95)
Results of safety forum on C++

26% favored use
26% undecided
30% would not consider
17% use is dangerous

Copyright © 2000 Certification Services, Inc. 3

2002 FAA Software Conference
C++ -

CSI

CSI

3Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

Why single out C++?

C++ is well known and has vocal advocates
and detractors
Significant correspondence to other
languages
Provides good case study for goal
Goal: establish criteria to judge any
language used in civil certification

C++ has enjoyed enormous growth and support. Every computer science
graduate is familiar with C++. The language is seemingly everywhere. It has
also been maligned by some of the biggest names in the safety community.

The reason I picked C++ for this presentation is that C++ is easily recognized
and most people have heard at least some controversy surrounding it. I want
to use C++ as an example of how computer programming languages could be
handled within a DO-178B environment. The principles we should use to
judge C++ can be used for any language. Although other language advocates
might protest, C++ has significant features in common with other popular (and
supposedly safer) languages such as Ada and Pascal. The goal is to establish
under what conditions any given language is suitable for use on civil
certification projects.

Copyright © 2000 Certification Services, Inc. 4

2002 FAA Software Conference
C++ -

CSI

CSI

4Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

Safety forum conclusions

Against
Predictable execution
can’t be reasoned from
source code
Memory leak not statically
determinable
Order of execution not
defined
Behavior of STL uncertain
Safe subset doesn’t exist

For
Availability of tools and
experience
Safe subset is possible
No worse than other large
languages (Ada)
Safety incidents not
correlated to language/
CMM level
Requirements better target

The European Railway signaling standard raised the possibility of using C++ in its safety-
critical applications. Brian Wichmann, a respected authority on programming languages from
the National Physical Laboratory in the UK, warned of dangers in such use.

Wichmann started a discussion of C++ on the Internet
(http://www.cs.york.ac.uk/hise/sclist/cplussafety.html) involving about 20 key people in
software and safety (Leveson, Mellor, McDermid, et al). As might be expected, there was
considerable opposition to C++. Much of the criticism centered on potential problems rather
than specific evidence of any direct safety impact. As Les Hatton points out in Safer C
(McGraw-Hill, 1995), a large proportion of errors in programs tend to remain undiscovered for a
long time. He also makes the point that most of these are discoverable by static analysis via
tools. However, his stated position is that C++ shouldn’t be used for safety-critical systems.

On the “for” side, a strong case was made that languages have little to do with eventual safety
when compared to system design, requirements, software design robustness, and other
properties not related to language choice. Most safety-critical systems adopt restricted subsets
of whatever language is used. Ada, as used on the Boeing 777 fly-by-wire flight controls, was
touted as an example of this during the discussion thread.

Trying to evaluate a language in a vacuum, while with some merit, doesn’t provide the needed
information from a safety viewpoint. The real issue is whether the behavior of the system can
be reasoned from the source code in conjunction with all of the other artifacts from DO-178B.
If so, then DO-178B objectives provide an acceptable level of confidence that the specified
behavior (including derived requirements) and the execution behavior are equivalent.

Copyright © 2000 Certification Services, Inc. 5

2002 FAA Software Conference
C++ -

CSI

CSI

5Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

Overall approach

begin{
Determine language-sensitive objectives and guidance
Determine desired features
Evaluate applicable features for ability to meet
objectives
Establish error-prone portions of language
Produce enforceable coding standards to govern
language subset and usage

}end

There are many claims as to why one should or should not use C++. There is little to help
you determine systematically if any given language -- assembly, Pascal, Ada, whatever --
is suitable for safety-critical applications. However, DO-178B provides a lens through
which to view a proposed language. If all of DO-178B’s objectives at a given criticality
can be satisfied using the proposed programming language, then that language can be used
for code development at that criticality.

Such an evaluation hinges on the objectives and additional guidance that could be affected
by language choice. The resulting criteria should be suitable for judging any language.

Most projects seek a subset of language features based on project need. The subset is then
evaluated against the criteria referred to above. Language features that fail to meet the
criteria are rejected. Rejection might be due to difficulty of verification, to unpredictable
behavior, or to behavior that is known to be unacceptable.

Once the basic language has been reduced to an approvable subset, there might be other
issues associated with features that can be misused or misunderstood. Such features have a
high probability of introducing errors into the final product. This is more subjective, and
different organizations will come up with different answers.

Copyright © 2000 Certification Services, Inc. 6

2002 FAA Software Conference
C++ -

CSI

CSI

6Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

DO-178B language guidance

Sec. 4.4.2: Language and compiler considerations
Product verification validates compiler for that product
Planning considers language and compiler
Verification considers language and compiler

Language-sensitive objectives
A1: plans, environment, considerations (+tools), standards,
A5: all
A7: Structural Coverage/D&CC
A10: understanding, means of compliance

Issue: reasoning about behavior from source code

Section 4.4.2, Language and Compiler Considerations, has the following wording: Upon successful completion of
verification of the software product, the compiler is considered acceptable for that product. For this to be valid, the
software verification process activities need to consider particular features of the programming language and
compiler. The software planning process considers these features when choosing a programming language and
planning for verification.

The following objectives are affected to a lesser or greater degree by language choice:

Table A-1

1 Software development and integral processes activities are defined. 4.1a, 4.3 – additional activities may be required
(e.g., structural coverage feasibility, training, reviews of checklists). Checklists used for other languages might be
inappropriate for C++ and could require changes.

3 Software life cycle environment is defined. 4.1c

4 Additional considerations are addressed. 4.1d – If the language is uncommon in avionics, this section should contain
proposed rationale and mitigations.

5 Software development standards are defined. 4.1e – these will follow from the language analyses discussed earlier.

Table A-5: all; While there should be little problem in reviewing the source code against the design, the choice of
programming languages might not fit well with the design description language. This could require extra direction to
reviewers or changes to the design description approach.

Table A-7: 5 through 6; structural coverage (modified condition/decision, 6.4.4.2; decision coverage), 6.4.4.2a 6.4.4.2b;
statement coverage 6.4.4.2a 6.4.4.2b data coupling and control coupling 6.4.4.2c. The concern is whether the
proposed coverage approach provides sufficient confidence in the executable image. This is a concern for constructs
such as templates, class definitions, inheritance, and polymorphism. This would be less of a problem at Level A.
For Level A, the activity performed to identify added functionality added by the compiler (e.g object to source code
correspondence analysis) should identify any unexpected behaviors.

Table A-10

1 Communication and understanding between the applicant and the certification authority is established. 9.0

2 The means of compliance is proposed

If the language is already familiar to the certification authority or if there has been substantial avionics experience with
the language, then little needs to be said other than identify the language. However, in the case of C++, there is little
familiarity or experience.

Copyright © 2000 Certification Services, Inc. 7

2002 FAA Software Conference
C++ -

CSI

CSI

7Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

Other applicable guidance

DO-248B
FAQ 31: Verification of product
DP 12: Source to object code
DP 13: Structural coverage

Cast 8 issue paper: Use of C++ language
FAA OOTia

DO-248B has no specific guidance on acceptability of computer languages. It
does mention the effect of language choice. FAQ 31 explains why the testing
of the final product validates the compiler for that specific instantiation,
relieving the applicant of compiler qualification. DP 12 discusses the effects
of language choice on functionality added by the compiler. DP 13 discusses
the effects of language features on structural coverage analysis.

CAST has released their issue paper on use of C++. The paper identifies
issues to be addressed by users of C++ but provides no guidance on
acceptability. There was spirited discussion of these issues at the 2002
FAA/NASA conference on Object Oriented Technology in Aviation. The
conference was well attended and probed deeply into object-oriented
technology. Although the conference was intended to be language-
independent, many of the issues and approaches were directly applicable to
C++.

Copyright © 2000 Certification Services, Inc. 8

2002 FAA Software Conference
C++ -

CSI

CSI

8Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

Next steps

Summary
Determine features
Capability to meet objectives
Evaluate “error-proneness”
Develop coding standards

Use existing (safe?) subsets
Defined by language experts
Project usefulness
Validation of results

Roll your own

Copyright © 2000 Certification Services, Inc. 9

2002 FAA Software Conference
C++ -

CSI

CSI

9Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

Safe subsets

NIST
QA C++ (based on Safer C principles)

Commercial tool support

EC ++
Other homegrown definitions

Unlike Ada, which has often had accepted subsets, C++ has not converged on
any widely accepted safe subset. NIST has developed a set of guidelines for
use of C++, as has the Nuclear Regulatory Agency (NRC). In addition to C++
the NRC has proposed guidelines for using other programming languages as
well.

A company in England (see references at the end of this presentation) has
developed a tool tied to the company’s definition of a safe subset of C++. This
company had produced an earlier tool tied to Hatton’s Safer C rules. The
newer tool follows similar lines.

On a more public scale, an embedded specification for C++ has been
developed and recently approved by a committee constituted for this purpose.
The specification’s subset attempts to ensure predictable execution. Several
restrictions are aimed at run-time efficiency.

Other, smaller efforts can be found on the web.

Copyright © 2000 Certification Services, Inc. 10

2002 FAA Software Conference
C++ -

CSI

CSI

10Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

Examples of restrictions

Union
ISO: 9.5 (1 page)
Issue: Unstructured type conversion undefined
Solution: Prohibit unjustified use/create safe union

Exceptions
ISO: Section 15 (6 pages)
An issue: Invalid object state
A solution: Invariant assured

Union – This feature (also available in Pascal as a variant record). This allows multiple types to be
overlayed on the same memory location. See section 9.5 of the standard. This is a method of saving
memory by reusing it for different data providing the programmer can keep track of which variable has
the latest stored value. It can be used to provide low level conversion of types however this will be
machine and compiler implementation dependent. For example there may be two huge arrays used in a
program that are sequentially stored and read in a manner that they will never interfere with each other
(i.e. write a[], read a[], write b[], read b[]). To save memory they can be made into a union. However
changes to timing dependent parameters could result in inconsistent states if the reading and writing
overlapped between the two arrays. While there are safe constructs for doing this simply requiring each
use to be justified and evaluated for safety during reviews is probably the best approach if limited usage is
made of this construct.

Exceptions – These are a built – in C++ approach to handling run time errors (also available in Ada). See
section 15 of the standard. Exceptions are invasively wound into the run time environment and the
compiler logic. The difficulty of dealing with exceptions belies the 6 pages in the ISO standard (50+
pages were devoted to templates a much less intrusive construct). One of the issues with using
exceptions is that persistent object or global variable could be left in an invalid state. If objects contain
invariants, these can be checked prior to throwing an exception and ensuring that the invariant is
maintained. For example code for a class will not create partially populated or un-initialized objects.
This can create additional complexity for code which can be traded off against potential predictable error
handling. Other issues are created with the use of exceptions and placement syntax since standard
resource allocation and de-allocation will not be used typically (ISO 15.2. Interestingly Embedded C++
does not include exceptions and the NIST document discourages the use of exceptions. Compiler
implementation of this feature has not been consistent according to the NIST document.

Copyright © 2000 Certification Services, Inc. 11

2002 FAA Software Conference
C++ -

CSI

CSI

11Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

Examples of restrictions

Multiple inheritance
ISO: 10.1 (1 page)
An issue: duplicate names in different
ancestors create ambiguity
Solution: Create overloaded function
specifying base class

Multiple Inheritance– The idea is that characteristics from a number of base
classes can be combined into a subclass. This is discussed thoroughly in the
OOTia position paper on inheritance. This is one issue from the general
theory that is actually dealt with by the ANSI Standard. While the standard
requires the compiler to reject this as ill formed, this could result in redesign
on a large project with deep and widely distributed class hierarchies. One
approach is to provide standards entries that that require disambiguation. A
more elegant approach will require the use of explicitly overloaded base class
definitions which specify the name of the desired base class. Here is a case
where the compiler behavior is well specified but standards prevent potential
rework. EC++ eliminates the multiple inheritance feature and the NIST
implementation strongly discourages it use. If it is used NIST puts strong
limitations on it’s application.

Copyright © 2000 Certification Services, Inc. 12

2002 FAA Software Conference
C++ -

CSI

CSI

12Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

Examples of error-proneness

Reference types: implicit modification
++ operator, especially array assignment

A[i] = A[i] + i++;
Y=Y+++C;

Confusing = = with =
Documented implicit casting
mdbl=mchar+mint

The issue of error-proneness is difficult. In the case of the ++ operator, the first example shown is
undefined by the standard since order of operation is undefined. The outcome is implementation-
dependent. Intimate knowledge of the compiler and testing of all occurrences of this construct could
alleviate the problem. The second example shown is specified by the language but little known and
poorly understood. It is easily handled by requiring white space around every token:

Y^=^Y^+^ ++^C^ (where ^ represents white space)

Some constructs might be desirable in spite of their potentially troublesome natures. A given piece
of code containing a deprecated construct might be more confusing without the construct. In such
cases, the developer should try to mitigate the construct’s undesirable aspects through appropriate
coding standards, reviews, additional verification, and so on. An example is the “equal” confusion
shown in the slide above. Some organizations have attempted -- without success -- to solve this by
using

#define IsEqualTo ==

whereas the use of C++ rules, placing constants on the left of comparisons, or targeted reviews might
be more effective.

While the C++ standard mostly defines the effect of the following formula

doubleType = charType + integerType + doubleType,

repeated application of implicit typing in different program sections may result in an unexpected
result. The easiest approach is to disallow all implicit type conversion except by conversion.
Another approach is to define rules for when it is allowed and why.

Experience matters. A shop with six years of deep C++ experience will make different mistakes than
a shop adopting the language for the first time.

Copyright © 2000 Certification Services, Inc. 13

2002 FAA Software Conference
C++ -

CSI

CSI

13Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

Roll your own: the sequence

Establish language definition
Determine desired constructs

Copyright © 2000 Certification Services, Inc. 14

2002 FAA Software Conference
C++ -

CSI

CSI

14Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

Establish language definition

Accepted standard or reference
ISO/IEC 14882 (1 September 1998)
Embedded C++

Specific implementation
Microsoft C++
Borland C++
GNU C++
Avionics embedded compilers

The C++ standard was released on 1 September 1998. Not all C++ compilers
comply with the standard. Both the standard and the implementation must be
evaluated. There is often no way to guarantee consistent execution behavior
from one compiler to the next.

The ISO standard for C++ is about 715 pages, the Ada language reference
manual about 650.

Copyright © 2000 Certification Services, Inc. 15

2002 FAA Software Conference
C++ -

CSI

CSI

15Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

Validation test suite

Used to establish conformance to a
“formally” defined language
Normally not an issue for DO-178B
Could be used in selection of language
Issue of service experience vs validation

Copyright © 2000 Certification Services, Inc. 16

2002 FAA Software Conference
C++ -

CSI

CSI

16Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

Conclusions

DO-178B provides a means to establish
acceptable use of a specific language
Language analysis is difficult and time-
consuming
Any language, including C++, can be
adapted to DO-178B environment

Copyright © 2000 Certification Services, Inc. 17

2002 FAA Software Conference
C++ -

CSI

CSI

17Copyright © 2002 Certification Services, Inc. 2002 FAA Software Conference C++ -

References

Regulatory information

1) “Use of the C++ Programming Language”, Certification Authorities Software Team
(CAST) Position Paper CAST-8, January, 2002

2) OOTia – http://shemesh.larc.nasa.gov/foot/ discussed thoroughly in other
presentations

Safe subsets and related information

1) “The Use of the C++ Programming Language for the Development of Safety-Critical
Systems”, Nigel G. Backhurst, November 1995

2) “C++ in Safety-Critical Systems”, David W. Binkley, NIST, November 1995

3) QA C++ tool-defined safe subset,
http://www.programmingresearch.com/solutions/generic_cpp.htm

4) “Embedded C++: an overview”, P.J. Plauger, Embedded Systems Programming,
December 1997

5) “Rationale for the Embedded C++ Specification”, Version WP-RA -003, Embedded
C++ Technical Committee, 1998

6) “Review Guidelines for Software Written in High Level Programming Language Used
in Safety Systems”

NUREG CR/6463 Rev. 1, 1997 [Editorial – this reference doesn’t provide a real subset but
more of things to examine in different languages including C++)

Standards

1) “Embedded C++ Specification”, Version WP-AM-003, Embedded C++ Technical
Committee, October 1999

2) “Programming Languages C++”, ISO/IEC 14882, September 1998

Other Information

1) “Safer C: Developing Software for High-integrity and Safety-Critical Systems”, Les
Hatton, McGraw-Hill Book Company, 1995

2) Moderated discussion on C++ and Safety, Brian Wichmann,
http://www.cs.york.ac.uk/hise/sclist/cplussafety.html

